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ABSTRACT: We examine five-dimensional N' = 2 gauged supergravity including terms
up to four derivatives. These additional terms correspond to the supersymmetric comple-
tion of R?, and were originally obtained in hep-th/0611329 using conformal supergravity
techniques. Here we integrate out the auxiliary fields and obtain the on-shell action for
minimal supergravity with such corrections. We then construct R-charged AdS black holes
to linear order in the four derivative terms and investigate the effect of these corrections on
their thermodynamical properties. Finally, we relate the geometrical coefficients governing
the four-derivative corrections to gauge theory data using holographic anomaly matching.
This enables us to obtain a microscopic expression for the entropy of the solutions.

KEYwoRDS: Black Holes in String Theory, AdS-CFT Correspondence, Anomalies in Field
and String Theories, 1/N Expansion

© SISSA 2009 doi:10.1088,/1126-6708/2009,/12/045


mailto:seracre@umich.edu
mailto:hanaki@umich.edu
mailto:jimliu@umich.edu
mailto:pszepiet@umich.edu
http://dx.doi.org/10.1088/1126-6708/2009/12/045

Contents

1 Introduction 1
2 Higher derivative gauged supergravity 3
2.1 The leading two-derivative action 4
2.1.1 Integrating out the auxiliary fields 6

2.2 Higher-derivative corrections in gauged SUGRA 9
2.2.1 Integrating out the auxiliary fields 10

3 Anomaly matching and AdS/CFT 12
3.1 The Weyl anomaly 13
3.2 The R-current anomaly 14
3.2.1 Extracting the R-current anomaly from the N/ = 2 case 15

4 R-charged solutions 17
4.1 Higher order corrected R-charged solutions 17
4.2  Conditions for horizon formation 18

5 Thermodynamics 20
6 Discussion 22

1 Introduction

While one of the major achievements of modern physics has been the development of
fundamental quantum field theories of matter, extending this to quantum gravity remains
a challenge. In particular, conventional quantization of the Einstein-Hilbert action leads to
a non-renormalizable theory. Nevertheless, both gravity and supergravity theories remain
viable as effective field theories describing the low-energy limit of a UV complete theory
such as string theory. Viewed in this light, it is then natural to explore higher derivative
corrections to the two-derivative action.

Independent of supergravity, many people have considered higher derivative gravity
theories such as f(R) gravity, curvature-square theories, and so on. In terms of a derivative

expansion, the first non-trivial terms enter at the R? level
e 'L =R+ a1R* + asR R"™ + a3Ryype R*P + - - . (1.1)

In general, these additional terms modify the graviton propagator and give rise to ghosts
(with the exception of the Gauss-Bonnet combination). While this was initially viewed

as an argument against higher derivative gravity, these pathologies only show up at the



Planck scale, where traditional quantum gravity is already ill-defined due to its non-
renormalizability. Furthermore, from the modern effective field theory point of view, such
higher derivative terms are necessarily present, and carry information of the underlying
UV complete theory.

A natural place to explore higher derivative supergravity theories is in the context
of string theory, which gives rise to an effective low energy supergravity including higher
derivative corrections. For example, it has been long known from string theory that the
first curvature corrections to the Type II supergravity action appear at R* order [1-3],
while corrections to heterotic supergravity first appear at R? order [4, 5]. Of course, even
in the absence of stringy computations, supersymmetry itself puts strong constraints on the
form of the higher derivative terms. Thus the absence of R? terms in Type II supergravity
may also be viewed as a consequence of maximal supersymmetry. In general, the use of
supersymmetry to constrain the form of the interactions is extremely powerful, and this is
simply another example of this phenomenon.

In this paper, we investigate black holes in higher-derivative corrected five-dimensional
N = 2 gauged supergravity. Our motivation is two-fold. Firstly, we are interested in
exploring the nature of stringy corrections to supergravity and in particular whether such
higher-order corrections may smooth out singular horizons of small black holes. Secondly,
five-dimensional gauged supergravity is a natural context in which to explore AdS/CFT,
and black holes are important thermal backgrounds for this duality. By working out these
gravity corrections, we may learn more about finite-coupling as well as 1/N effects in the
dual N = 1 super-Yang-Mills theory.

Because of the reduced supersymmetry, we expect the first corrections to N' = 2
gauged supergravity to occur at R? order. For this reason, we will limit our focus on
four-derivative terms in the effective supergravity action. While in principle these terms
may be derived directly from string theory, doing so would involve specific choices of
string compactifications down to five dimensions as well as the potential need to work out
contributions from the Ramond-Ramond sector. To avoid these issues, we instead make use
of supersymmetry, and in particular the result of [6], which worked out the supersymmetric
completion of the AATr RA R term in N/ = 2 supergravity coupled to an arbitrary number
of vector multiplets using the superconformal tensor calculus methods developed in [7-12].

Although we are not aware of an actual uniqueness proof, we expect the four-derivative
terms constructed in [6] to be uniquely determined by supersymmetry (modulo field redef-
initions). The ungauged story is rather elegant, and may be tied to M-theory compactified
on a Calabi-Yau three-fold. In this case the higher derivative corrections are given by

e~16L = Loy [%EMVPAOAI“R”"WR’\UW fo], (1.2)

where the ellipses denote the supersymmetric completion of the AATr RA R Chern-Simons
term. Comparing this term with the Calabi-Yau reduction of the M5-brane anomaly term
demonstrates that the coeflicients coy are related to the second Chern class on the Calabi-
Yau manifold. The higher-derivative corrected action has recently been applied to the
study of five-dimensional black holes in string theory (see e.g. [13] and references therein).



While much has already been made of the higher-derivative corrections to ungauged
supergravity, here we are mainly interested in the gauged supergravity case and resulting
applications to AdS/CFT. In this case, the natural setup would be to take IIB string theory
compactified on AdSs x Y® where Y? is Sasaki-Einstein, which is dual to N = 1 super-Yang-
Mills theory in four dimensions. While the four-derivative terms worked out in [6] apply
equally well to both gauged and ungauged supergravity, in this case their stringy origin is
less clear. However, the cor coefficients governing the four-derivative terms may be related
to gauge theory data using holographic anomaly matching [14-18], as we will see below.

Before constructing the R-charged black holes in the higher-derivative corrected theory,
we first integrate out the auxiliary fields of the off-shell formulation (to linear order in coy),
yielding an on-shell supergravity action. Throughout this paper, we furthermore work in
the truncation to minimal supergravity involving only the graviton multiplet (g,., A, ¥u).
While this on-shell action is implicit in the work of [6], we find it useful to have it written
out explicitly, as it facilitates comparison with other recent results. This is especially of
interest in providing a more rigorous supergravity understanding of the R? corrections to
shear viscosity [19-21] and drag force [22, 23].

The outline of the paper is as follows. Section 2 is dedicated to obtaining the on-shell
supergravity action. In section 3 we relate the gravitational parameters li% and ¢y (the coef-
ficients governing the four-derivative terms) to the central charges a, ¢ of the dual CFT. In
section 4 we construct static stationary R-charged AdS black holes with spherical, flat and
hyperbolic (k = 1,0,—1) horizons. These solutions, given to linear order in ¢, extend the
well-known black hole solutions of the two-derivative theory [24, 25]. We also present a brief
discussion on the effects of the higher derivative corrections on the structure of the horizon.
Following this, in section 5 we study some basic thermodynamical properties of the black
holes, including their temperature and entropy. We conclude in section 6 with a discussion.

2 Higher derivative gauged supergravity

In this section we investigate five-dimensional N' = 2 supergravity with the inclusion of
(stringy) higher-derivative corrections. We are mainly interested in the case of gauged
supergravity, which is the natural setting for the AdS/CFT setup. Because of the reduced
amount of supersymmetry, we expect the first corrections to this theory to occur at R?
order. For this reason, we will limit ourselves to four-derivative terms in the effective
supergravity action.

The conventional on-shell formulation of minimal N' = 2 gauged supergravity [26, 27|
is given in terms of the graviton multiplet (g,., A, 1%) where 1% is a symplectic-Majorana
spinor with ¢ = 1,2 labeling the doublet of SU(2). The bosonic two-derivative Lagrangian
takes the form

e Lo =~R—3F}, + 5omeP Fu FpAq +12¢°, (2.1)

where g is the coupling constant of the gauged R-symmetry, and where we have followed the

sign conventions of [6].! We are, of course, interested in obtaining four-derivative correc-

"We take [V, V. ]v° = Ry, v° and Rap = R,.5%.



tions to the above Lagrangian that are consistent with supersymmetry. Along with purely
gravitational corrections of the form (1.1), other possible four-derivative terms include F*,
mixed RF? and parity violating ones. Given the large number of such terms, it would
appear to be a daunting task to work out the appropriate supersymmetric combinations.
Fortunately, however, it is possible to make use of manifest supersymmetry in the form of
superconformal tensor calculus to construct supersymmetric R? terms. (See e.g. [28] for a
nice review, albeit focusing on four-dimensional N' = 2 supergravity.)

The general idea of the superconformal approach? is to develop an off-shell formulation
involving the Weyl multiplet that is locally gauge invariant under the superconformal group.
The resulting conformal supergravity may then be broken down to Poincaré supergravity
by introducing a conformal compensator in the hypermultiplet sector and introducing ex-
pectation values for some of its fields. One advantage of this method is that the off-shell
formulation admits a superconformal tensor calculus which enables one to construct super-
symmetric invariants of arbitrary order in curvature. This is in fact the approach taken
in [6], which worked out the supersymmetric completion of the AATr RA R term in N = 2
supergravity coupled to an arbitrary number of vector multiplets.

The basic construction of [6] involves conformal supergravity (i.e. the Weyl multiplet)
coupled to a set of ny 4+ 1 conformal vector multiplets and a single compensator hypermul-
tiplet. The resulting Lagrangian takes the form

L=Co+Ly=cY)+ i+ 4, (2.2)

where Lg corresponds to the two-derivative terms and £; the four-derivative terms. We
have further broken up Ly into contributions E(()V) from the vector multiplets and E((]H)
from the hypermultiplet.

As formulated in [6], the full Lagrangian £ contains a set of auxiliary fields which we
wish to eliminate in order to make direct comparison to the on-shell Lagrangian (2.1). To
do so, we simply integrate out the auxiliary fields using their equations of motion, and the
remainder of this section is devoted to this process. As an important shortcut, we note that
when working to linear order in the correction terms in £1, we only need to substitute in
the lowest order expressions for the auxiliary fields [33]. For this reason, we first examine

the two-derivative Lagrangian before turning to the four-derivative terms contained in L.

2.1 The leading two-derivative action

We begin with the vector multiplet contribution to the two-derivative Lagrangian [6]

e_lﬁ(()v) =N (%D — %R + 31)2) + 2./\/’[’UMVF;{V +NIJ%FJVFJ’W + icUKeWW‘UAﬁF;]pF{g

~Npy (3D*M D, M7 + YY) (2.3)

where M7, Aﬁ and Yé (I,J =1,2,...,n,+ 1) denote, respectively, the (real) scalar fields,
the gauge fields and the SU(2)-triplet auxiliary fields in the n, + 1 vector multiplets. In
addition, the scalar D and the two-form v, are auxiliary fields coming from the Weyl

2The superconformal method has a long history, see for example [7-12, 29-32] and references therein.



multiplet. The prepotential N and its functional derivatives are given by the standard
expressions

N =dep M MIME, Np=tepeM/ MY, Ny =crye M. (2.4)
For future reference, we also note the useful relations
./\/]MIZ?)N, ./\/[JMJ:Z/\/]. (2.5)
Turning next to the hypermultiplet Lagrangian, we have [6]
1 (H _ 4 _ . o
1L = 2 [DIATD, AL+ AT (g M) A+ 20 ACAT |+ A% (LD + 2R - L?) . (26)

In general, A%, are a set of 4 x ny hypermatter scalars carrying both the SU(2) index i
and the index a« = 1,2,...,2npg of USp(2ng). (We use the SU(2) index raising convention
A" = €9 A; and A; = Alej; with €12 = €!? = 1). Note that we have gauged a subgroup G

of USp(2ny), so that the covariant derivative appearing above is given by
DAY = 0, AY — gAlt ALY + ATV, (2.7)

where t are the generators of the gauge symmetry and where V,fj is an additional auxiliary
field belonging to the Weyl multiplet. Finally, we have defined M = M't;, where M! are
the vector multiplet scalars.

For simplicity, we focus on a single compensator and choose the conventional gauging
of the diagonal U(1) in the SU(2) R-symmetry. In this case, the action of M on the
hyperscalars is given by

MAS = Mt AY = MY Py (i0®) A7, (2.8)
while the covariant derivative becomes
DAL = 0,A% — gAL Py (i0%) 5 AY + ASV, (2.9)
[ Mng]ZO'BZ g V- .

Here P; denote the charges associated with the gauging. Furthermore, A? = A?Ag =
.Af dﬁo‘Afx, where the metric d g s arranged to be a Kronecker delta symbol as appropriate
for a compensator [6].

Combining (2.3) with (2.6), the complete two-derivative action is given by

e Ly = 1D (2N + A2 + R(3A% - IN) + 02 (3N — 14%)

F2N FL, + Ny (5L F W — SDFMI D, MY ) + Siepyie™ 7 ALF,) FY

~NLYEYT T 42 [ DRATD, AL + AT (g M)? AL + 20V SATAT (2.10)

At the two-derivative level, the auxiliary field D plays the role of a Lagrange multiplier,
yielding the constraint

2N + A2 =0. (2.11)



Thus we can recover the standard very special geometry constraint /' = 1 by setting
A? = —2. (This fixing of the dilatational gauge transformation is in fact the purpose of
the conformal compensator). This then brings the Lagrangian to the following form:

Lo = 3DWN —1) = JRN +3) + v’ (3N + 1) + 2N 0" Fl,

AN (FLFI W — SDEMID, M) + 55 ey ALF) Y

N VYT g2 [D“A?DMAQ +AF (g M)? AL +2gY 5 AZA8] L (2.12)
2.1.1 Integrating out the auxiliary fields
The action (2.12) can be written in a more familiar on-shell form by integrating out the
auxiliary fields. We will do this in two steps by first eliminating the fields A%, V7 and Ylg
and then eliminating D and v,,.

We start by fixing the SU(2) symmetry by taking A$ = 65, which identifies the indices

in the hypermultiplet scalar. The equation of motion for V,/ is then given by

Vi =gPy (i0®)" Al (2.13)

which also results in D, A% = 0. Turning next to Y;g , we first note that

YL AYAT = gy 9Py (i0”), (2.14)
Varying (2.12) with respect to Yé then gives us the equation of motion
_IN\{J .
vi=2WN"1" P, (ia%),; - (2.15)

Using the above to eliminate A, V,fj and Yé from the two-derivative action (2.12),

we end up with

e 'Lo=3DWN —1) = IR(N +3) + 0> (3N + 1) + 2N F,
+ Ny (357 — Lot M 0, M) + Loy AL R

_1\{J 2
+ 8¢° (N7 PPy + 49 (PMT) (2.16)
where the last line corresponds to the gauged supergravity potential
V= —ag? 2N Y PPy + (P)?] (2.17)
Note that, with abelian gauging, the covariant derivative acts trivially on the vector mul-
tiplet scalars, DMMI = 8MMI.
To remove the remaining auxiliary fields D and v, from (2.16) we must turn to the

equations of motion for this system. Varying the action with respect to D, v,,, M I and
Aﬁ yields, respectively,

0=2N-1), (2.18)
0 = 203N + Lvy, + 2N F), | (2.19)
0= N7 (D = 3R+ 6v,,0™) + 2N Fl, 0" + § cryx Fl, FX ™ + Np,OM?
%
—i—% CIJK 3MMJ8“MK - —5MI y (2'20)
0= =V" [ANjvy, + N1 F)| + 2Crike /P FL FY . (2.21)



In addition, the Einstein equation is given by:
0=31W+3)(Ru — 2gwR) + 2N —1)Dg, — 1 (V,V,N — g, ON)
+1N (8MMI 0,M” — 1g,,0\M" aAMJ> — 23N+ 1) (vaV’\ _ %guyw\ov)‘”>
—4N; (F(IMAUV))\ - %gWF{UvM) — 1IN, (1%1?3A - %gWF/\IUF‘”"> — g, V. (222)

We are now in a position to start solving for the auxiliary fields D and v,,. Inserting
the very special geometry constraint N/ = 1 (enforced by the equation of motion for D)
into (2.19) yields

O = —3NIF}, . (2.23)

We may now eliminate A" and v, from the lowest order Maxwell and Einstein equations
to obtain

VY (WNING=N1g) B = —§Crike /P Fy, i,

Ry —LguwB = —LN7 <6MM18VMJ—%9W6>\M16AMJ>
—3 NING=N1y) (F,fAF;]A—igqufUFJA‘T) + 50wV . (224)

Turning next to the scalar equations of motion, we note that the n, + 1 equations may
be decomposed into n, equations for the constrained scalars M7, along with one equation
for the Lagrange multiplier D. To solve for D, we multiply the scalar equation by M7’
and obtain:

D — 3R+ 6,0 = —SNFL " — ANy FLF7 Y — NG 0,M 0P M7
5V
SMT

Substituting in R and v, then allows us to express the auxiliary field D entirely in terms

—aNOM! + 207 (2.25)

of physical fields:

sV
D = —SN0,M"O* M7 — SNTOM' + 5 (NINj — $N1g) Fl F7 W =3V 4+ 2M'——

oMI
= — LN oM " M7 — INJOM! + L (NN — INp) EL T
24 [GP,PJ (wvH —PIPJMIMJ} . (2.26)

By using (2.25), the equation of motion for the constrained scalars (2.20) can be rewritten as

J
(5;’— NIM > [cJKL (8, MEor ML 2 TMT)

%

1 K L

— (MyrNL—3¢skL) Fo F W | =0 (2.27)
Note that the first term in parentheses acts as a projector, reenforcing the fact that the
ny + 1 scalars M! are constrained, so that there are only n, independent scalar degrees
of freedom.



We now have all the ingredients we need to write down the on-shell two-derivative
Lagrangian:
e 'L =—R— §Np0,M 0" M7 — § (NINy = Niy) FL, F7H
o et AL S 4462 |2 (N PRy (PMT)] L (2.28)
where now the M' are a set of constrained scalars satisfying the very special geometry

condition N/ = 1. Note that this Lagrangian may be brought into a more conventional
form by defining the scalar metric

1
QWW ‘Nle—g(N[J—N[NJ), (229)

with inverse
a7 = (@M = —2 (v

In this case, (2.28) takes the form

(2.30)

e 'L =—R— N 0,M' "M — SG1 FL P/ -V + L epyi P ALF) FY | (2.31)

where the potential is now given by
V =4dg* (G —2M" M) PP;. (2.32)

This Lagrangian perfectly matches the bosonic sector of the standard two-derivative N' = 2
supergravity action coupled to n, vector multiplets [26, 27, 34]. The resulting equations of
motion are given by (2.24) and (2.27).

Here, we are mainly concerned with the truncation of (2.28) to the case of pure super-
gravity. This is accomplished by setting the scalars to constants® and by defining a single
graviphoton A, according to?

MY =M, Al =M'A, (2.33)

While the constants M' are arbitrary moduli in the ungauged case, in the gauged cause
they must lie at a critical point of the potential (2.17) given by solving

NiM7N 6V
87 — —— =0. 2.34
(of - 55 517 (2.34)
By demanding that the critical point is supersymmetric, we find that the constant scalars
satisfy:®
- 3 - 3
P’ =5, (W)Y PP =3 (2.35)

3Recall that the D = 5, N = 2 scalars M are real. The barred notation M7 is simply used to denote
the constant values of the scalars and related quantities at this order.

“Note that our definition differs by a factor of 1/3 from the conventional one where A, = Aﬁ./\f I

®These expressions can be obtained by making use of the hyperino and gauging SUSY variations, as well
as the equation of motion for the auxiliary field Ylé We refer the reader to [6] for more details.



in which case the potential becomes V = —12¢%. The resulting Lagrangian for the bosonic
fields of the supergravity multiplet (g,., A,) then reads

e 'L=—-R—3F., + 1" A,F,,F\, +12¢%, (2.36)

which reproduces the conventional on-shell supergravity Lagrangian (2.1) once the
graviphoton is rescaled according to 4, — A,/ V3.

While this completes the analysis relevant to the leading, two-derivative action, we
note that the expression for D simplifies further in the case of constant scalars. Substitut-
ing (2.33) and (2.35) into the expression (2.26) for D yields the simple result

D = % (/\7[/\7 — %-/\_/]J) F;{VFJW — %Fiy (2_37)

By taking N' = 1, we see that this explicit form of D does not play a role in the leading
expression for the two-derivative Lagrangian. However, it will become relevant in the
discussion of higher derivative corrections, which we turn to next.

2.2 Higher-derivative corrections in gauged SUGRA

We now turn to the four-derivative corrections to the action (2.2), which we parameterize
by L£1. For convenience, we separate the contributions to £; present in the ungauged
theory from those coming strictly from the gauging, £ = Elfngauged + E%auged. The two

are given by:

—1 pungauged 1 1 I u prpaf pio 1as1 prvpo | 1 arln2 | 1l | pv
e Ly = a1 | Fscpprr A RPOI R gt LM o OF/9 45 M D2+ L F 0 D
_lagl pvpo 1l pv po 8arl v P
s M Clpsv"v s Clypov +3M v, VIV pv
_16 301, 1up v_2pr1,,2 A arIxg,vpe Anrixgp,vp
9M v vp,,RM 9M v R+3M VH#u Vuvl,p—FgM VPV v,
—%Mleﬂ,,pon“”vp)‘ng”‘s—i-%FI “”ewp,\ov’)‘sv(gv}“’—i—FI“”eWp)\ovng)‘v"‘s
4 1l pv A 1 00 pv 2 I v A I 2\2
=3 F 0 00P 0y, — s B 0, 0" +AM oy, 0 Popy ot — M (v ) }, (2.38)

—1 pgauged _ 1 1 Ipprpij Ao
1L Lot |~ ewpro ATV RPI(U)RY (U)

—§ MR (U) R i5(U) = § Vi R (U)) (2.39)

where

R, (U) =0,V =VauVi? —(nev). (2.40)
As we can see, the constants co; parameterize the magnitude of these contributions.
Notice that the scalar D no longer acts as a Lagrange multiplier, since it now appears
quadratically in £1. In fact, by varying the full action £ = Ly + £ with respect to D,

with Lo as in (2.16), we obtain the modified very special geometry constraint
_ C21 I Ipv
N=1- = (DM" + F' "™ uy,) (2.41)

which encodes information about how the scalars M are affected by higher-derivative cor-

rections.



2.2.1 Integrating out the auxiliary fields

As in the two-derivative case, in order to obtain a Lagrangian written solely in terms of
the physical fields of the theory we need to eliminate the auxiliary fields D, v, V:V and
Yé from £ = Lo+ L. In section 2.1 we solved for the auxiliary fields by neglecting higher
order corrections, and then integrated them out of the two-derivative action. It turns out
that the lowest order expressions for the auxiliary fields are sufficient when working to
linear order in the cor [33]. This allows us to reuse the results of the previous section for

the auxiliary fields, which we summarize here:

Vil = gpy (i0%)" AL, (2.42)
vi=2(N )Y P (ic%), (2.43)
O = —§NIFL,, (2.44)
D = § (NN — $N1) FL F7H (2.45)

While it is valid to use these lowest order expressions, it is important to realize that
the scalar fields are modified because of (2.41). This modification leads to additional
contributions to the two-derivative on-shell action (2.28), which combines with £; to yield
the complete action at linear order in coy.

In principle, we may work with the full system of supergravity coupled to ny vector
multiplets. However, here we focus on the truncation to pure supergravity, where the
scalars M are taken to be non-dynamical. Even so, they are not entirely trivial. While
at the two-derivative level, we may simply set them to constants according to (2.33), here
we must allow for the modification (2.41) by defining

M! :MI+CQMI, A{L :MIA“, C2 ECQ[MI, (246)

where M are possible scalar fluctuations that enter at O(cz). Substituting this into the
expressions (2.44) and (2.45) for the auxiliary fields then yields

Uy = —3F +O(c2), D=3F210(c), (2.47)

which match the lowest order expressions for constant scalars. The modified very special
geometry constraint (2.41) can now be simplified further, and becomes

€2 12 2
N=1-_—F"+0(x). 2.48
The most general solution for the fluctuating scalars M’ ought to come from solving the
equations of motion. However, as a shortcut, we make the ansatz that M s proportional
to M!. The modified constraint (2.48) is then enough to fix the correction to the scalars
to be
M=l [1- 2R 40 (c%)] . (2.49)
288
Consistency of this ansatz with the equations of motion also demands an appropriate
relation between the various cor coefficients. Finding this relation involves solving for the

,10,



auxiliary field D to linear order in cp;. When applied to the M! equation of motion this
imposes the condition

1 — g 1 -
Coy = gCQJ MJN[ == gCQN[. (2.50)

Although this appears to place a strong restriction on the form of the higher derivative
corrections, since we are only interested in the system where the vector multiplets are
truncated out, it makes no difference what the conditions were prior to truncation, so long
as the combination of parameters cp given in (2.46) survives.

We are now ready to integrate out both the scalars M' and the auxiliary fields from
the two-derivative action Lo given in (2.12). By making use of the corrections® to the

leading order scalar expressions (2.35)

3 c2 _INIJ 3 Co
PMf:—[1——F2} 1 PP:—[l 2 2], 2.51
! 2 st | W)U PP =g+ o (2:51)
we find that the contribution coming from Ly yields the following terms:
e Lo=-R-2p2 11 P AL, Fry + 127 + =2 R 2+ — (F2)2 b2 F?
0 4 4 vpTra 24 64 4
(2.52)

Turning next to the four-derivative contributions, we note that, since such terms are
already linear in co, we may simply use the leading order solution for the scalars. The
gauging contribution (2.39) is then particularly simple

e—lﬁfauged _ _%92 eﬂypAoAuFupF)\a ) (2.53)

On the other hand, the contribution to L'lfngauged is given by:

—1 d _ 02 1 vpd A 2 3 v A v
Lmeange 24 [16 Epupra AVRVPTRN 5 4 — 5 C,W, —Clup W FP — FIE,, R,

3 3
——RF2 + 5 P VIV 4 5 V“F”pqu,,p + 3 VIFN Ly

1
+3 €uvpro FM (BFPAVsF0 4 AFPN s FA7 4 6FF VA F°)

15 e 45 a0
o1 B FEAFY — = (F?) |- (2.54)

The full on-shell Lagrangian is thus given by

1 2 LVPAO 2
L=—-R--F 1 e 1—— P AFVFo—i-lQ
€ < +72029> ] ( 16029 )6 ptvp L'\ g

co |1 2 2\2 ungauged
— | =RF"+ — (F . 2.
+24[16R +64( ):|+£1 (2.55)
Finally, we may redefine A, to write the kinetic term in canonical form:

5
Afinal — /3 (1 + 117029 ) Al (2.56)

6These can be easily verified using Pr = iNIJMJ.
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The Lagrangian then becomes:

1 1 1
L=—-R—-F*+ — <1 — —0292> e‘“”»“’AﬂF,,pF)\J + 124°

1 12v/3 6
C2 1 2 1 212 ungauged
—= | —RF?+ — (F L£ungaug 2.57
o [48 +576( )|+ 4 ’ (2.57)
with
—1 punganged _ 21 L argronpye, Lee Vo pwpes  Lpwep o
¢ M ~ 2 l1637 AT T ER

1 1 1 1
—ﬁRFQ + S Fuw VIV 1+ SVIFYN By S VIEYPN By
1

+ o o P <3FPAV5F"5 AP 4 6F”5VAF”5>
5 5} 2
oy B P EA Y — 22 (F?) - (2.58)

3 Anomaly matching and AdS/CFT

In the above section, we have written out the on-shell five-dimensional N/ = 2 gauged
supergravity Lagrangian up to four-derivative order. Restoring Newton’s constant, this
takes the form

1 1 1
! R— —F*4 ——e"P A\ F,,F\, + 12¢° +

- - 2 ¢ - 3.1
167G 4 123 +oo (31

€ 192~ Hveo

where we have only written out a few noteworthy terms. Given this Lagrangian, it is
natural to make the appropriate AdS/CFT connection to A/ = 1 super-Yang Mills theory.
Before we do so, however, we present a brief review of the AdS/CFT dictionary in the case
of N = 4 super-Yang Mills.

The standard AdS/CFT setup relates IIB string theory on AdSs x S® to N = 4 super-
Yang Mills with gauge group SU(N) and 't Hooft coupling \ = g%MN . The standard
AdS/CFT dictionary then reads

ol Args N = gy N, (3.2)

where L is the ‘radius’ of AdSs. This duality may be approached more directly by reducing
IIB supergravity on S°, yielding A" = 8 gauged supergravity in five dimensions. Just as in
the N/ = 2 case of (3.1), this theory is determined in terms of two gravity-side parameters,
G5 (Newton’s constant) and ¢ (the gauged supergravity coupling constant). These are
related to the parameters of the AdS/CFT dictionary (3.2) according to
1 L3
= N?Z=_—_—. 3.3

Since the range of N’ = 1 gauge theories is much richer than that of N'=4 SYM, it is

worth rewriting the above AdS/CFT relations in terms of more general invariants of the
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gauge theory. This may be elegantly done through anomaly matching, and in particular by
making a connection through the holographic Weyl anomaly [14]. Note that a discussion
of the N/ = 1 SCFT description of the higher derivative theory was already given in [6],
where special emphasis was placed on the technique of a-maximization. Here we wish to
provide a more complete discussion of the relation between the gravity parameters Gs, g
and co and the gauge theory data.

3.1 The Weyl anomaly

For a four-dimensional field theory in a curved background, the Weyl anomaly may be

parameterized by two coefficients, commonly denoted a and ¢ (or equivalently b and ')

C a

T = —C—- —F A4
< i) 1672 16727 (3-4)
where
— (2 _ p2 2 1 p2
C=0Clpe =Rype — 2R, + 3R (3.5)
is the square of the four-dimensional Weyl tensor, and
E=R, =R, , —4R,, + R’ (3.6)

is the four-dimensional Euler invariant. At the two-derivative level, the holographic com-
putation of the N' = 4 SYM Weyl anomaly gives a = ¢ = N2/4 [14]. Combining this
with (3.3) then allows us to write

w3
8—675,

which has the advantage of being completely general, independent of the particular gauge

(3.7)

a = Cc=

theory dual.
The prescription for obtaining the holographic Weyl anomaly for higher derivative
gravity was worked out in [16, 35], and later extended in [36] for general curvature squared

terms. The result is that, for an action of the form
_ 1
e L= 55 (FR+1207 + aR? + R, + 1Ry ) (3.8)

the holographic Weyl anomaly may be written as [36]

2L L 5a B ~ L 3y 2

where L is related to g (to linear order) by

1 1
=—|1-—5(2 4 2 . 1
g L[ 73(20a 448 + 7)] (3.10)
Comparison of (3.4) with (3.9) then gives the curvature-squared correction to (3.7)
L3 4
= 11— 2 (10a+2
a 8G5[ L2( a+ B—i—’y)}
% 4
= — [1-—(10 268 — . 3.11
¢ = 5 [1- e0a-+25 - )] (3.11)
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Turning now to the N' = 2 gauged supergravity Lagrangian of (3.1), we see that the
curvature-squared corrections are proportional to the square of the five-dimensional Weyl
tensor. This gives

C 1 4
| 12
(@89 = 15 (G=31). (3.12)
so that 5 X
L L Co 1
_ _ = = —. 3.13
“T8Gs ¢ 8G5( +24L2> I=1 (3.13)

Note that the AdS radius is unshifted from that of the lowest order theory. This is because
AdS is conformally flat, so that the Weyl-squared correction in (3.1) has no effect on the
background. Finally, we may solve for ¢o to obtain

o c—a

— = . 14
24 ag? (3.14)

This is the key relation connecting the four-derivative terms in the gauged supergravity
Lagrangian to the N' =1 gauge theory data.

3.2 The R-current anomaly
A consistency check on the form of c2 comes from the gravitational contribution to the
anomalous divergence of the U(1)g current (d,(,/g R")), since the latter is related by
supersymmetry to the conformal anomaly (T};).

The CFT U(1) anomaly is given by

tI‘ G[GJGK) tr Gy
MNZcpr = | A FIANFE 4 2 ab 1
CFT = / [ Y ANFT + 155 2 Ba ART (3.15)

where G7 is a global U(1)1 generator, and the trace is taken to be a sum over all the fermion
loops. The AdS/CFT relation Zcpr = exp(—Ipyk) then connects this field theory anomaly
to the coefficients of the Chern-Simons terms in the bulk supergravity:

_ tr (G1G,GK) 1 J K trGr ab
Ty = +/[ Y A'NFIANF +To5 ——5A ARy ANR™| (3.16)

where the ellipses denote the gauge invariant part of the action. Comparison to the AARAR

term of (2.38) gives
TCo1

trGy = — . 3.17
Gy = -2 (317)
To relate ¢ = cor M ! to the central charges, we can use the relation (37, 38]
a= 3 (3trR® — trR), c= i(Qtng — 5trR) (3.18)
32 ’ 32 ’

provided we can relate G appropriately to the U(1) charges R. A few comments are
needed to explain how to identify the R-charge correctly. First of all, the R-charge is a
particular linear combination of the G, proportional to M!G;. Also, the supercharge Qo
should have R-charge one. The U(1) charges of @, can be read off from the coupling
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between the gauge fields and the graviphoton in the gravity side, and the algebra is given
by [G1,Qa] = PrQq. This uniquely determines the R-charge as

M!'G;L 1 7eoL
R= ol trR= ——— =~ 3.19
o’ T TP 8G, (3.19)
Recall that the combination P;M! = 3/2 can be determined from the vacuum solu-
tion, (2.35). By plugging this equation into (3.18), we obtain
Co 8G5
= (e —a). 2
54 = oI (c—a) (3.20)

In addition, the gravitational constant also can be determined from the U(1) anomaly.
Eq. (3.16) implies

2
gl g
tI'(G[GJGK) = @ (120[][( — §C(IPJPK)> . (321)
By multiplying M M7 MY on both sides, we obtain
27 s 3¢
R = — (12— 5 ) . 3.22
8L3 T T 8G, ( 4L2> (3:22)

The formula for the central charges (3.18) and (3.20) then gives
1 a

= . 3.23
167Gy 2m2L3 (3.23)
Using this relation, (3.20) can be rewritten as
2 c—a

These results agree with those found through the holographic Weyl anomaly calculations,
as expected for consistency.

3.2.1 Extracting the R-current anomaly from the A = 2 case

Since the U(1) normalization may be somewhat obscure, we may perform an additional
check by making contact with the N/ =2 SCFT literature. In fact, one can extract the co
result (3.14) from the analysis of [39], which studied R-symmetry anomalies in the N' = 2
SCFT dual to AdSs x S®/Z,. Of course, the appropriate supersymmetric CFT that is dual
to our bulk N' = 2 AdS;5 theory has A/ = 1 supersymmetry. Nevertheless, one can still
use the analysis of [39], after carefully rewriting it in the language of N' = 1 anomalies.
Before doing so, we will need to make a few general comments on the connection between
the CFT R-current anomalies and the dual supergravity description.

The four-dimensional CFT R-current anomaly is sensitive to the amount of supersym-
metry, and is given by [15]:

L _c¢—ax d5a — 3¢ ~
Ou(Va R )n=1 To2 RR+ 92 FF, (3.25)
c—a - 3(c—a) ~
@L(\/ER“)NZQ = 12 RR + T FF, (326)
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where F is the flux associated with the R-symmetry. The R-symmetry of N'= 2 SCFTs
is U(1)g x SU(2)g. The U(1)g symmetry of its N' = 1 subalgebra is
1 4
Ra=1 = gRNZQ + g[g, (3.27)
where Iy, Is, I3 are SU(2)g generators. The factor of 1/3 in the relation above can also be
seen in the gravitational contributions to 9,(y/g R*) in (3.25) and (3.26). Recall that the
mixed U(1)-gravity-gravity anomaly d,(,/gR") o< RR is represented in the bulk by the
mixed gauge-gravity Chern-Simons interaction oc [ AdSs A ANtr(R A R). Thus, the bulk CS
term associated to the N'=1 SCFT will be 1/3 of that corresponding to N' = 2.
Furthermore, when using the results of [39], we will have to be careful with how the
U(1) gauge field is normalized. In the AdS/CFT dictionary, the normalization of the gauge

field kinetic term
F Fr

4 g§G

Sadss = /d4x dz+/—g (3.28)

can be extracted by looking at the two-point function of the dual CFT currents sourced by
the gauge field A,(%) = A,(Z, 2)|[boundary. For a four-dimensional CFT, the general form
of the two point function of such currents is given by [40]:

() 50)) = oy (005~ 005) (.

where B is a numerical coefficient which is related to the normalization of the gauge

(3.29)

kinetic term:

B o . (3.30)

9sa

For the N' = 2 computation of [39] one finds B = 8, while for the case of N' = 1 super-
symmetry [41] we read off B = 8/3. Notice that the two results are again off by a factor
of 3. We now have all the ingredients we need to apply the (N = 2 SCFT) analysis of [39]
to our case (N =1 SCFT). We have seen that both the gauge kinetic term normalization
and the coefficient of the mixed gauge-gravity CS term will have to be adjusted.

The five-dimensional supergravity action of [39] takes the form

N2 FZ N
S = —WQLg/x/—gTRJr g | ARAE(RAR)
_N2 /—a F2 L? 3y A
T / [ —9 PR = 5 oo AN R s, | (3.31)

where A® is the gauge field that couples canonically to the R-current. This was the effective
supergravity Lagrangian which was appropriate for comparison to the N'= 2 SCFT. Since
we are interested in comparing to a CFT with N'= 1 SUSY, we will need to rescale both
terms by appropriate factors of 1/3:

—N2 \/ 1 2 L2 U prpdy pAc
T An2I3 -9 an—mﬁuupAaA R™PTR™ 5 | (3.32)

,16,



Finally, we rescale the graviphoton, A® = (1/3/2)A, to obtain a canonical gauge kinetic

term: ) ) )
N F L
S g | |V T~ gy e AR (33
This is the action which should be compared to ours:
N? F? €2 U pPUpSY pAc
Suszm \/g —R—I—Fmﬁﬂyp)\oAR R 5,\/4—... y (334)
finally giving us
1212 —
== 2412°¢ - “. (3.35)

in agreement with (3.14) and (3.24).

4 R-charged solutions

The embedding of the lowest order five-dimensional N = 2 gauged U(1)? supergravity into
IIB supergravity was done in [42]. If the three U(1) charges are taken to be equal, we
end up with the minimal supergravity system that we have considered above, (2.1). The
static stationary non-extremal solutions are well known, and were found in [25]. For the
truncation to minimal supergravity, they take the form

ds® = H>fdt* — H (f~'dr® + r*dQ3 ;)

3(kQ + ) 1
A= — 11— —= 4.1
where the metric functions H and f are:
Q
H(T) =1+ ﬁ’
) = k=55 + g2 H5. (4.2)

Here u is a non-extremality parameter and ngJ,C for k = 1, 0, or —1 corresponds to the
unit metric of a spherical, flat, or hyperbolic 3-dimensional geometry, respectively.

4.1 Higher order corrected R-charged solutions

We wish to find corrections to the R-charged solutions (4.1) given the higher derivative
Lagrangian (2.57). To this end, as in [43] we treat ¢z as a small parameter and expand the
metric and gauge field as follows:

H(r) = 1+%+02h1(r),

f(r) = k—%+92T2H3+02f1(7"),

_ 3Rt (1 1+ eal)
A= 5 (1 = >dt, (4.3)
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where h1, f1, and a1 parameterize the corrections to the background geometry. Solving the

equations of motion for the theory, we arrive at:

by~ QUQ+H)
! 72r0HZ
= TOPQUQ ) 4
! 7274 9616 Hy ’
Q 3Qu
= ———— |4(k —3u—— . 4.4
The new corrected geometry is therefore given by
e [ —Q(FQ + )
H(r) = H =
(r) = Holr) + 55 [ 3r6H? |
_ o [ 8¢2Q(kQ + p) 2
Jr) = Jolr) + 34 [_ 3rd T Lo H, |
ca /3Q(kQ + p) 2 2
At(r) = Ato(r) — QTI{S [2 (kQ + ,LL) T — ur HQ] s (45)

where Hy, fo, and Ay refer to the background solutions (4.1) and (4.2). Finally, we should
note that in the literature @) and p are sometimes written in terms of a parameter [,
defined by sinh? 3 = kQ/ 2.

We will state the k = 0 and k& = 1 solutions explicitly, since they have several interesting
applications: the former to studies of the hydrodynamic regime of the theory, and the latter
to the issue of horizon formation for small black holes. For k = 0, the solution is given by

HO) = Hilr) + 5 | 7ot
8 2 2
f(r) = folr)+ 52 [— ZL0 451{0] ,
At(T‘) = AtQ(V") — ;—Z |:270?;?{§ (MT’Q — Q,U)] (4 6)

while for k£ = 1 it is given by

H(r) = Ho(r) - 22 [%} ,
c 2 2
1) = po) + 55 | -2EGEE ]
Ay(r) = Agolr) — ;—Z [%;u) ((2Q + p)r? — Qu)] . (4.7)

4.2 Conditions for horizon formation

We would like to conclude this section with some comments on the structure of the horizon
for the solutions that we have found. In particular, we are interested in whether higher
derivative corrections will facilitate or hinder the formation of a horizon. In the standard
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two-derivative theory, the BPS-saturated limit (x = 0) of the £ = 1 solution (4.1)—(4.2)
describes a geometry with a naked singularity, the so-called superstar [44]. Furthermore,
even if the non-extremality parameter is turned on, one finds that a horizon develops only
given a certain critical amount, u > u. [25]. It is therefore natural to ask what happens
to such geometries once we start incorporating curvature corrections. For the superstar,
we would like to see hints of horizon formation. In the non-extremal case, on the other
hand, it would be nice to determine whether the inclusion of higher-derivative corrections
leads to a smaller (larger) critical value p., increasing (decreasing) the parameter space
for the appearance of a horizon. However, one should keep in mind that our arguments
are only suggestive, since our analysis is perturbative, while the formation of a horizon is
a non-perturbative process. Moreover, given that even in the non-extremal case turning
on p does not guarantee the presence of a horizon, it is not clear at all whether higher
derivative corrections can be enough to push the superstar to develop a horizon. A more
proper analysis would involve looking directly at the SUSY conditions, and asking whether
they are compatible with having a superstar solution with a finite horizon. In fact, there
are already studies which seem to indicate [45] that this may not be possible.
The spherically symmetric solutions presented in (4.7) are of the form:

ds® = Fy(r) dt* — Fy(r)dr® — F3(r) dQ3. (4.8)

Horizons appear at zeroes of the function Fj(r). One can make arguments about their
existence without having to solve explicitly for their exact location. Notice that Fj(r) is a
positive function for large r. Thus, a sufficient condition for having at least one horizon is

Fy (Tmin) <0, (49)

where ry,, is a (positive) minimum of Fj(r). This was the reasoning used in [25] to study
the properties of the horizon of the non-extremal solution.
For the corrected superstar solution we have, expanding in cs:
-1
f fotea(fi—2foHy")

F=25 77 +0(3) . (4.10)

It is easy to see that, to leading order, the numerator does not vanish. With the inclusion
of higher-derivative terms, however, it picks up a negative contribution, hinting at the
possibility of a horizon. Furthermore, the minimum of the function F' = fo + ca(f1 —
2foh1Hy 1) will shift. Let’s see precisely how that happens. To lowest order, its minimum
= 2@, which in turn gives us F(:U(O) ) = 14 27¢°Q/4. Including higher

. . 0
is given by x in

min
order corrections, we find

81¢%2Q — 4
Pmin = 70 + = 20— 2L (a.11)
Now we have )
1 g
F(zwin) = 1+ 27620 /4 — = 4.12
(xmln) + 27g Q/ + c2 <972Q 48> ) ( )
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which tells us that the minimum of the function will be slightly closer to zero as long as
g*Q > 4/81.

The analysis of the conditions for the existence of a horizon in the non-extremal case
(1 # 0) is significantly more involved. The expression for the corrected horizon radius in
terms of the original, two-derivative horizon radius r is:

R g HY (3Q% — 26Qr2 + 3r8) — 2¢2H3 (13Q — 3r3) + 3 (41
e 24Horo [¢?HE (Q — 2rd) — 1] T

24

Notice that we traded p in favor or 7 in the expression above by making use of fo(rg) = 0,
i.e. the relation p/ 7“8 =1+ gQTSHS’. As we mentioned above, in the two-derivative case one
finds a critical value pcriy above which a horizon will form. It would certainly be interesting
to explore for which parameter values r; decreases or increases, and more importantly, how
the (corrected) critical value of p is affected by the curvature corrections. We leave this to
future studies.

5 Thermodynamics

We may now study some of the basic thermodynamic properties of the non-extremal so-
lutions constructed above. With an eye towards AdS/CFT in the Poincaré patch, we will
focus on the k£ = 0 solution (4.6), although the analysis may easily be carried out for the
other cases as well. We begin with the entropy, which for Einstein gravity is characterized
by the area of the event horizon. In the presence of higher derivative terms, however, this
relation is modified, and the entropy is no longer given by the area law. Instead, we may
turn to the Noether charge method developed in [46] (see also [47, 48]).

The original Noether charge method is only applicable to a theory with general covari-
ance, but has been extended to a theory with gravitational Chern-Simons terms in [49].
Our action includes a mixed Chern-Simons term of the form A A R A R. But as long as
we keep this term as it is, with a bare gauge potential, the general covariance is unbroken
and we can still use the original formulation. In the absence of covariant derivatives of the
Riemann tensor, the entropy formula is given by [46]

b
S = —QW/EdDQx\/—hﬁ €uv€po » (5.1)

where X denotes the horizon cross section, h is the induced metric on the it and €, is the
binormal to the horizon cross section.

For the metric ansatz (4.1) the only non-vanishing component of the binormal €, is
€ty — —€Ept — H_1/2 . (52)

Applying the prescription (5.1) to the action (2.57), we obtain, to linear order in ¢y,

A o, ©2 1 o 1 o2 | 5 vo A 1 o
S:@ [—g“pg” +ﬂ(—ZC’“”p — 35909 F + 359" FMFP\— s FIW FP )] €€ po

7 (Q+3T%)

5.3
C2 18 (T(Q]+Q)3 ) ( )

:E
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where A = f vV—h d€)3 o is the area of the horizon for the solution to the higher derivative
theory. Also, r; denotes the radius of the event horizon for the corrected black brane
solution, while 7y is the horizon location for the original, two-derivative solution (4.2).
The former can be found by requiring that the gy = f(r)/H(r)? component of the cor-
rected metric vanishes.” Similarly, rq satisfies fo(rg) = 0. Notice that the non-extremality
parameter u can be expressed entirely in terms of ry and Q:

9°(r§ + Q)°

fo(ro) =0 = p= B — (5.4)

We can therefore eliminate p from (5.3), and write the entropy in the following form:

2Q+3T8]

5.5
48 7’8 ( )

A
= — 1
S 4G5[ + cag

The first term above is simply the contribution coming from the area, while the remaining
O(c2) term is the expected deviation from the area law.

In order to arrive at the entropy density, we need one more ingredient, which is the
relation between the corrected and uncorrected horizon radii ry and rg:

v e (14 2808+ Q)BQ? = 26QrG + 3rj)
R 24 24r8(Q — 2r2) '

(5.6)

This is because the area A appearing in (5.5) is computed using . This expression allows
us to write the entropy per unit three-brane spatial volume entirely in terms of ry as well
as the physical parameters of the theory

(8 + Q)2 (|, c2 *(3Q% — 14Qrg — 2115)
4G5 L3 24 8r3(Q — 2r})

22+ Q)32 3Q? — 14Qr2 — 21r}
T g6 <a+ (c—a) 8r2(Q — 2r2) )

In the second line we have used the relations (3.13) to replace the gravitational quantities

(5.7)

G5 and ¢y by the central charges of the dual CFT. Notice that the lowest order term above
matches the two-derivative entropy computation of [50].

While rg is the coordinate location of the horizon in the lowest order computation,
it is not in itself a physically relevant parameter. Instead, it may be viewed as a proxy
for the Hawking temperature associated with the non-extremal solution. A simple way of
computing this temperature is to identify it with the inverse of the periodicity of Euclidean
time 7. The relevant components of the metric are given by

ds* = H2fdr* + Hf *dr* +--- | (5.8)

and the horizon is located at f(ry) = 0. Expanding near the horizon and identifying the
proper period of 7 to remove the conical singularity yields the temperature
(B+ Q" [(23-Q) e (3Q°+4Q%3 +59Qrd — 10r5)

Trr = . 5.9
N Ry R TV S (22— Q) (5:9)

"To linear order in the expansion parameter cz, this coincides with demanding that f(r) vanishes.
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In principle, we may invert this expression to obtain ry as a function of temperature T
and charge ). This then allows us to rewrite the entropy density as a function of charge
and temperature, s = s(Ty, Q). In practice, however, non-trivial R-charge introduces a
new scale, so that the entropy density/temperature relation no longer takes the simple
form s ~ T3 resulting from simple dimensional analysis.

6 Discussion

The main result of the previous section is the derivation of the entropy (5.7) of an R-
charged black brane including higher-derivative corrections, which are controlled by the
parameter cs. Furthermore, the identification of the gravitational parameters G5 and co
in terms of the central charges a, ¢ of the dual CFT has allowed us to express the entropy
in terms of microscopic, gauge theory data. In particular, the relation between co, which
signals the contribution coming from R? terms, and the CFT central charges is given by
co = 24L%(c —a)/a.

A non-trivial check on the corrections to the entropy can be done by considering the
zero R-charge (Q = 0) limit of (5.7), which should agree with the analysis of [19]. For a
Lagrangian of the form

R
 167G5

— A+ OélRQ + OQR;QU/ + OégRina , (61)

the authors of [19] showed that the entropy density of a 5D AdS black brane solution is

given by
2m 1 18

5= L323 | 87Gs B ﬁ(

where L denotes the AdS curvature radius, L2 = —6/(87G5A), and 2 is the leading order
horizon location in the coordinates used in [19]; in our notation, zp = 1/r¢. Comparing (6.1)

12
Saq + 042) + ﬁag R (6.2)

to our action, where the only curvature corrections that survive the ) = 0 limit come in

the form of Cﬁyw = %RQ — %wa + RZWJ, we read off:
1 Co 1 C9 1 Co
167Gsa1 = ——, 16nGs00 = ———, 16nGsa3 = - —. 6.3
T50 4894 Tlr502 624"’ TGs03 8924 ( )

Making use of these expressions, the entropy of [19] takes the form

1 21lc—a
-1+ = 6.4
° 4L3zS’G5[ T } (64)

matching nicely the @ = 0 limit of (5.7), as expected.

We should point out that a similar discussion has appeared very recently in [18], where
the authors considered the hydrodynamic regime of the CFT dual to the zero R-charge
black brane background of [19]. In [18], however, higher derivative corrections associated
with R? and R, are eliminated via a field redefinition, making direct comparison to our
entropy less straightforward.

Our interest in studying higher order corrections to R-charged AdSs black holes is also
motivated by our desire to investigate corrections to the hydrodynamic regime of the dual
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theory. It is natural to apply the results of this work to the calculation of 7/s, the shear
viscosity to entropy ratio, which has recently received a great deal of attention. In partic-
ular, our present construction of higher-derivative corrected R-charged black holes allows
for a generalization of the finite coupling shear viscosity calculation to the case of finite
(R-charge) chemical potential. This is an avenue which we are currently exploring [51].

We would like to conclude with a few comments on the issue of horizon formation.
As we mentioned in section 3, the so-called superstar solution at the two-derivative level
has a naked singularity. With the inclusion of higher derivative contributions, it appears
that the corrected superstar may develop a horizon, provided that the charges are large
enough, g?Q > 4/81. However, we should note that our analysis is entirely perturbative,
while horizon formation is an intrinsically non-perturbative phenomenon. While our results
show that the first corrections to the geometry seem to push the superstar solution “in the
right direction,” increasing the chances of forming a horizon, a more rigorous analysis is
certainly needed to reach a conclusive result.
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